3.301 \(\int \tan ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\)

Optimal. Leaf size=123 \[ \frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}-\frac {\sqrt {a-b} \tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {(a-2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 \sqrt {b} f} \]

[Out]

-arctan((a-b)^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))*(a-b)^(1/2)/f+1/2*(a-2*b)*arctanh(b^(1/2)*tan(f*x+e)/
(a+b*tan(f*x+e)^2)^(1/2))/f/b^(1/2)+1/2*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/f

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 123, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3670, 478, 523, 217, 206, 377, 203} \[ -\frac {\sqrt {a-b} \tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}+\frac {(a-2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 \sqrt {b} f} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-((Sqrt[a - b]*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/f) + ((a - 2*b)*ArcTanh[(Sqrt[b]
*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/(2*Sqrt[b]*f) + (Tan[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(2*f)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(m + n*(p + q) + 1)), x] - Dist[e^n/(b*(m + n*(p +
q) + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 1) + (a*d*(m - n + 1) - n*q*(b
*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] &&
GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \tan ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^2 \sqrt {a+b x^2}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}-\frac {\operatorname {Subst}\left (\int \frac {a+(-a+2 b) x^2}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}+\frac {(a-2 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}-\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}+\frac {(a-2 b) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 f}-\frac {(a-b) \operatorname {Subst}\left (\int \frac {1}{1-(-a+b) x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}\\ &=-\frac {\sqrt {a-b} \tan ^{-1}\left (\frac {\sqrt {a-b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}+\frac {(a-2 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{2 \sqrt {b} f}+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{2 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.18, size = 708, normalized size = 5.76 \[ \frac {b^2 \sin ^4(e+f x) \csc (2 (e+f x)) \sqrt {\frac {(a-b) \cos (2 (e+f x))+a+b}{\cos (2 (e+f x))+1}} \sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (\cos (2 (e+f x))+1) \csc ^2(e+f x)}{b}} \sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{a f ((a-b) \cos (2 (e+f x))+a+b)}+\frac {\tan (e+f x) \sqrt {\frac {a \cos (2 (e+f x))+a-b \cos (2 (e+f x))+b}{\cos (2 (e+f x))+1}}}{2 f}+\frac {4 b (a-b) \sqrt {\cos (2 (e+f x))+1} \sqrt {\frac {(a-b) \cos (2 (e+f x))+a+b}{\cos (2 (e+f x))+1}} \left (\frac {\sin ^4(e+f x) \csc (2 (e+f x)) \sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (\cos (2 (e+f x))+1) \csc ^2(e+f x)}{b}} \sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} F\left (\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{4 a \sqrt {\cos (2 (e+f x))+1} \sqrt {(a-b) \cos (2 (e+f x))+a+b}}-\frac {\sin ^4(e+f x) \csc (2 (e+f x)) \sqrt {-\frac {a \cot ^2(e+f x)}{b}} \sqrt {-\frac {a (\cos (2 (e+f x))+1) \csc ^2(e+f x)}{b}} \sqrt {\frac {\csc ^2(e+f x) ((a-b) \cos (2 (e+f x))+a+b)}{b}} \Pi \left (-\frac {b}{a-b};\left .\sin ^{-1}\left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right )\right |1\right )}{2 (a-b) \sqrt {\cos (2 (e+f x))+1} \sqrt {(a-b) \cos (2 (e+f x))+a+b}}\right )}{f \sqrt {(a-b) \cos (2 (e+f x))+a+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

(b^2*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*Sqrt[-((a*Cot[e + f*x]^2)/b)]*Sqrt[-((a*(
1 + Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Csc[2*(e
 + f*x)]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*Sin[e + f*x
]^4)/(a*f*(a + b + (a - b)*Cos[2*(e + f*x)])) + (4*(a - b)*b*Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[(a + b + (a - b)*
Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*((Sqrt[-((a*Cot[e + f*x]^2)/b)]*Sqrt[-((a*(1 + Cos[2*(e + f*x)])*Csc
[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Csc[2*(e + f*x)]*EllipticF[ArcSin
[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*Sin[e + f*x]^4)/(4*a*Sqrt[1 + Cos[2*
(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]]) - (Sqrt[-((a*Cot[e + f*x]^2)/b)]*Sqrt[-((a*(1 + Cos[2*(e +
 f*x)])*Csc[e + f*x]^2)/b)]*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]*Csc[2*(e + f*x)]*Ellip
ticPi[-(b/(a - b)), ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1]*Sin[e + f*
x]^4)/(2*(a - b)*Sqrt[1 + Cos[2*(e + f*x)]]*Sqrt[a + b + (a - b)*Cos[2*(e + f*x)]])))/(f*Sqrt[a + b + (a - b)*
Cos[2*(e + f*x)]]) + (Sqrt[(a + b + a*Cos[2*(e + f*x)] - b*Cos[2*(e + f*x)])/(1 + Cos[2*(e + f*x)])]*Tan[e + f
*x])/(2*f)

________________________________________________________________________________________

fricas [A]  time = 0.72, size = 539, normalized size = 4.38 \[ \left [-\frac {{\left (a - 2 \, b\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) - 2 \, \sqrt {-a + b} b \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right ) - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} b \tan \left (f x + e\right )}{4 \, b f}, -\frac {4 \, \sqrt {a - b} b \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) + {\left (a - 2 \, b\right )} \sqrt {b} \log \left (2 \, b \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {b} \tan \left (f x + e\right ) + a\right ) - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} b \tan \left (f x + e\right )}{4 \, b f}, -\frac {{\left (a - 2 \, b\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right ) - \sqrt {-a + b} b \log \left (-\frac {{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - 2 \, \sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-a + b} \tan \left (f x + e\right ) - a}{\tan \left (f x + e\right )^{2} + 1}\right ) - \sqrt {b \tan \left (f x + e\right )^{2} + a} b \tan \left (f x + e\right )}{2 \, b f}, -\frac {2 \, \sqrt {a - b} b \arctan \left (-\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\sqrt {a - b} \tan \left (f x + e\right )}\right ) + {\left (a - 2 \, b\right )} \sqrt {-b} \arctan \left (\frac {\sqrt {b \tan \left (f x + e\right )^{2} + a} \sqrt {-b}}{b \tan \left (f x + e\right )}\right ) - \sqrt {b \tan \left (f x + e\right )^{2} + a} b \tan \left (f x + e\right )}{2 \, b f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)^2,x, algorithm="fricas")

[Out]

[-1/4*((a - 2*b)*sqrt(b)*log(2*b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(b)*tan(f*x + e) + a) - 2*s
qrt(-a + b)*b*log(-((a - 2*b)*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) - a)/(ta
n(f*x + e)^2 + 1)) - 2*sqrt(b*tan(f*x + e)^2 + a)*b*tan(f*x + e))/(b*f), -1/4*(4*sqrt(a - b)*b*arctan(-sqrt(b*
tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x + e))) + (a - 2*b)*sqrt(b)*log(2*b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x
+ e)^2 + a)*sqrt(b)*tan(f*x + e) + a) - 2*sqrt(b*tan(f*x + e)^2 + a)*b*tan(f*x + e))/(b*f), -1/2*((a - 2*b)*sq
rt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))) - sqrt(-a + b)*b*log(-((a - 2*b)*tan(f*x +
 e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)*tan(f*x + e) - a)/(tan(f*x + e)^2 + 1)) - sqrt(b*tan(f*x + e
)^2 + a)*b*tan(f*x + e))/(b*f), -1/2*(2*sqrt(a - b)*b*arctan(-sqrt(b*tan(f*x + e)^2 + a)/(sqrt(a - b)*tan(f*x
+ e))) + (a - 2*b)*sqrt(-b)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-b)/(b*tan(f*x + e))) - sqrt(b*tan(f*x + e)
^2 + a)*b*tan(f*x + e))/(b*f)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \tan \left (f x + e\right )^{2} + a} \tan \left (f x + e\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)^2,x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*tan(f*x + e)^2, x)

________________________________________________________________________________________

maple [B]  time = 0.30, size = 230, normalized size = 1.87 \[ \frac {\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\, \tan \left (f x +e \right )}{2 f}+\frac {a \ln \left (\tan \left (f x +e \right ) \sqrt {b}+\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\right )}{2 f \sqrt {b}}-\frac {\sqrt {b}\, \ln \left (\tan \left (f x +e \right ) \sqrt {b}+\sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}\right )}{f}+\frac {\sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {\left (a -b \right ) b^{2} \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}\right )}{f b \left (a -b \right )}-\frac {a \sqrt {b^{4} \left (a -b \right )}\, \arctan \left (\frac {\left (a -b \right ) b^{2} \tan \left (f x +e \right )}{\sqrt {b^{4} \left (a -b \right )}\, \sqrt {a +b \left (\tan ^{2}\left (f x +e \right )\right )}}\right )}{f \,b^{2} \left (a -b \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)^2,x)

[Out]

1/2*(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/f+1/2/f*a/b^(1/2)*ln(tan(f*x+e)*b^(1/2)+(a+b*tan(f*x+e)^2)^(1/2))-1/f*
b^(1/2)*ln(tan(f*x+e)*b^(1/2)+(a+b*tan(f*x+e)^2)^(1/2))+1/f*(b^4*(a-b))^(1/2)/b/(a-b)*arctan((a-b)*b^2/(b^4*(a
-b))^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))-1/f*a*(b^4*(a-b))^(1/2)/b^2/(a-b)*arctan((a-b)*b^2/(b^4*(a-b))
^(1/2)/(a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \tan \left (f x + e\right )^{2} + a} \tan \left (f x + e\right )^{2}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*tan(f*x + e)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {tan}\left (e+f\,x\right )}^2\,\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^2*(a + b*tan(e + f*x)^2)^(1/2),x)

[Out]

int(tan(e + f*x)^2*(a + b*tan(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \tan ^{2}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(f*x+e)**2)**(1/2)*tan(f*x+e)**2,x)

[Out]

Integral(sqrt(a + b*tan(e + f*x)**2)*tan(e + f*x)**2, x)

________________________________________________________________________________________